Exercise 33

Find the solution of the inhomogeneous equation

$$
\begin{aligned}
\frac{1}{c^{2}} u_{t t}-u_{x x} & =k \sin \left(\frac{\pi x}{a}\right), \quad 0<x<a, t>0, \\
u(x, 0) & =0=u_{t}(x, 0) \quad \text { for } 0<x<a, \\
u(0, t) & =0=u(a, t) \quad \text { for } t>0 .
\end{aligned}
$$

Solution

This problem can be solved with the Laplace transform since we have initial conditions and $t>0$. It is defined as

$$
\mathcal{L}\{u(x, t)\}=\bar{u}(x, s)=\int_{0}^{t} e^{-s t} u(x, t) d t,
$$

which means the derivatives of u with respect to x and t transform as follows.

$$
\begin{aligned}
& \mathcal{L}\left\{\frac{\partial^{n} u}{\partial x^{n}}\right\}=\frac{d^{n} \bar{u}}{d x^{n}} \\
& \mathcal{L}\left\{\frac{\partial^{2} u}{\partial t^{2}}\right\}=s^{2} \bar{u}(x, s)-s u(x, 0)-u_{t}(x, 0)
\end{aligned}
$$

Take the Laplace transform of both sides of the PDE.

$$
\mathcal{L}\left\{\frac{1}{c^{2}} u_{t t}-u_{x x}\right\}=\mathcal{L}\left\{k \sin \frac{\pi x}{a}\right\}
$$

The Laplace transform is a linear operator.

$$
\frac{1}{c^{2}} \mathcal{L}\left\{u_{t t}\right\}-\mathcal{L}\left\{u_{x x}\right\}=k \sin \frac{\pi x}{a} \mathcal{L}\{1\}
$$

Transform the derivatives with the relations above.

$$
\frac{1}{c^{2}}\left[s^{2} \bar{u}(x, s)-s u(x, 0)-u_{t}(x, 0)\right]-\frac{d^{2} \bar{u}}{d x^{2}}=\frac{k}{s} \sin \frac{\pi x}{a}
$$

Substitute the initial conditions, $u(x, 0)=0$ and $u_{t}(x, 0)=0$.

$$
\frac{s^{2}}{c^{2}} \bar{u}-\frac{d^{2} \bar{u}}{d x^{2}}=\frac{k}{s} \sin \frac{\pi x}{a}
$$

Multiply both sides by -1 .

$$
\frac{d^{2} \bar{u}}{d x^{2}}-\frac{s^{2}}{c^{2}} \bar{u}=-\frac{k}{s} \sin \frac{\pi x}{a}
$$

The PDE has thus been reduced to an ODE. This ODE is a second-order inhomogeneous equation, so the general solution for it is the sum of a complementary solution and a particular solution.

$$
\bar{u}=\bar{u}_{c}+\bar{u}_{p},
$$

\bar{u}_{c} is the solution to the associated homogeneous equation,

$$
\frac{d^{2} \bar{u}_{c}}{d x^{2}}-\frac{s^{2}}{c^{2}} \bar{u}_{c}=0,
$$

which is

$$
\bar{u}_{c}=A(s) \cosh \frac{s x}{c}+B(s) \sinh \frac{s x}{c} .
$$

Because the inhomogeneous term is sine and only even derivatives are present on the left side, \bar{u}_{p} has the form, $C_{1} \sin \frac{\pi x}{a}$. Plugging this form into the ODE allows us to determine the constant C_{1}. We get

$$
-\frac{C_{1}\left(c^{2} \pi^{2}+a^{2} s^{2}\right)}{a^{2} c^{2}} \sin \frac{\pi x}{a}=-\frac{k}{s} \sin \frac{\pi x}{a} \quad \rightarrow \quad C_{1}=\frac{k a^{2} c^{2}}{s\left(a^{2} s^{2}+c^{2} \pi^{2}\right)} .
$$

Thus, the general solution for $\bar{u}(x, s)$ is

$$
\bar{u}(x, s)=A(s) \cosh \frac{s x}{c}+B(s) \sinh \frac{s x}{c}+\frac{k a^{2} c^{2}}{s\left(a^{2} s^{2}+c^{2} \pi^{2}\right)} \sin \frac{\pi x}{a} .
$$

Now we use the provided boundary conditions at $x=0$ and $x=a$ to determine $A(s)$ and $B(s)$. Take the Laplace transform of both sides of them.

$$
\begin{array}{rlrl}
u(0, t)=0 \quad & \rightarrow \quad \mathcal{L}\{u(0, t)\} & =\mathcal{L}\{0\} \\
\bar{u}(0, s) & =0 \\
u(a, t)=0 \quad \rightarrow \quad \mathcal{L}\{u(a, t)\} & =\mathcal{L}\{0\} \\
\bar{u}(a, s) & =0 \tag{2}
\end{array}
$$

Setting $x=0$ and $x=a$ and using equations (1) and (2), we have

$$
\begin{aligned}
& \bar{u}(0, s)=A(s)=0 \\
& \bar{u}(a, s)=B(s) \sinh \frac{s a}{c}=0 \quad \rightarrow \quad B(s)=0 .
\end{aligned}
$$

Thus, the solution reduces to

$$
\bar{u}(x, s)=\frac{k a^{2} c^{2}}{s\left(a^{2} s^{2}+c^{2} \pi^{2}\right)} \sin \frac{\pi x}{a} .
$$

Now that we have $\bar{u}(x, s)$, we can change back to $u(x, t)$ by taking the inverse Laplace transform of it. Before we do so, rewrite the solution in a more convenient form. Start by using partial fraction decomposition.

$$
\bar{u}(x, s)=\left[\frac{k a^{2}}{\pi^{2}} \cdot \frac{1}{s}-\frac{k a^{4} s}{\pi^{2}\left(a^{2} s^{2}+c^{2} \pi^{2}\right)}\right] \sin \frac{\pi x}{a}
$$

Factor out a^{2} from the second denominator.

$$
\bar{u}(x, s)=\left(\frac{k a^{2}}{\pi^{2}} \cdot \frac{1}{s}-\frac{k a^{2}}{\pi^{2}} \cdot \frac{s}{s^{2}+\frac{c^{2} \pi^{2}}{a^{2}}}\right) \sin \frac{\pi x}{a}
$$

Factor $k a^{2} / \pi^{2}$.

$$
\bar{u}(x, s)=\frac{k a^{2}}{\pi^{2}}\left(\frac{1}{s}-\frac{s}{s^{2}+\frac{c^{2} \pi^{2}}{a^{2}}}\right) \sin \frac{\pi x}{a}
$$

Now take the inverse Laplace transform.

$$
\begin{aligned}
u(x, t)=\mathcal{L}^{-1}\{\bar{u}(x, s)\} & =\mathcal{L}^{-1}\left\{\frac{k a^{2}}{\pi^{2}}\left(\frac{1}{s}-\frac{s}{s^{2}+\frac{c^{2} \pi^{2}}{a^{2}}}\right) \sin \frac{\pi x}{a}\right\} \\
& =\frac{k a^{2}}{\pi^{2}} \mathcal{L}^{-1}\left\{\left(\frac{1}{s}-\frac{s}{s^{2}+\frac{c^{2} \pi^{2}}{a^{2}}}\right)\right\} \sin \frac{\pi x}{a} \\
& =\frac{k a^{2}}{\pi^{2}}\left(\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+\frac{c^{2} \pi^{2}}{a^{2}}}\right\}\right) \sin \frac{\pi x}{a} \\
& =\frac{k a^{2}}{\pi^{2}}\left(1-\cos \frac{c \pi t}{a}\right) \sin \frac{\pi x}{a}
\end{aligned}
$$

Therefore,

$$
u(x, t)=\frac{k a^{2}}{\pi^{2}}\left(1-\cos \frac{c \pi t}{a}\right) \sin \frac{\pi x}{a} .
$$

This answer is in disagreement with the answer at the back of the book. The factor in front there is $k / c^{2} \pi^{2}$. My answer satisfies the PDE and all initial and boundary conditions, but the book's answer does not.

